Ящик Пандоры - Информационный портал

Зельфира Трегулова: «Музей, как и театр, начинается с вешалки Это отличалось от советской практики

Где проживают родители алии мустафиной

«Вечер загадок по произведениям С

Игровые формы работы в проведении мероприятий по пропаганде здорового образа жизни Формы работы по формированию зож

Формы методы и средства «ЗОЖ Формы работы детьми по формированию зож

Слово прерывается на языках без пробелов между словами (например, азиатскими)?

Егэ география теория по заданиям

Кто был первым ученым, который предположил, что объекты могут продолжать двигаться без прикладной силы?

История возникновения числа Пи

Фразеологизмы с «соль Фразеологизмы хлеб соль

Путешественники второй половины XIX века

Страны латинской америки после окончания второй мировой войны

Смотреть что такое "Процент" в других словарях

Клеопатра: история царицы Египта

Каковы основные идеи Мартина Лютера и какова его роль в процессе Реформации?

О важности изучения митохондриальной днк. Особенности строения митохондриальной ДНК Митохондриальная днк строение

Основная статья: Митохондриальная ДНК

Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу, в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 10 5 раз меньше ДНК, локализованной в ядре. В целом митохондриальная ДНК кодирует 2 рРНК, 22 тРНК и 13 субъединиц ферментов дыхательной цепи, что составляет не более половины обнаруживаемых в ней белков. В частности, под контролем митохондриального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром-с -редуктазы. При этом все белки, кроме одного, две рибосомные и шесть транспортных РНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.

На этом фоне геном митохондрий растений значительно больше и может достигать 370000 нуклеотидных пар, что примерно в 20 раз больше описанного выше генома митохондрий человека. Количество генов здесь также примерно в 7 раз больше, что сопровождается появлением в митохондриях растений дополнительных путей электронного транспорта, не сопряжённых с синтезом АТФ.

Митохондриальная ДНК реплицируется в интерфазе, что частично синхронизировано с репликацией ДНК в ядре. Во время же клеточного цикла митохондрии делятся надвое путём перетяжки, образование которой начинается с кольцевой бороздки на внутренней митохондриальной мембране. Детальное изучение нуклеотидной последовательности митохондриального генома позволило установить то, что в митохондриях животных и грибов нередки отклонения от универсального генетического кода. Так, в митохондриях человека кодон ТАТ вместо изолейцина в стандартном коде кодирует аминокислоту метионин, кодоны ТСТ и ТСС, обычно кодирующие аргинин, являются стоп-кодонами, а кодон АСТ, в стандартном коде являющийся стоп-кодоном, кодирует аминокислоту метионин. Что касается митохондрий растений, то, по-видимому, они используют универсальный генетический код. Другой чертой митохондрий является особенность узнавания кодонов тРНК, заключающаяся в том, что одна подобная молекула способна узнавать не один, но сразу три или четырекодона. Указанная особенность снижает значимость третьего нуклеотида в кодоне и приводит к тому, что митохондрии требуется меньшее разнообразие типов тРНК. При этом достаточным количеством оказываются всего 22 различных тРНК.

Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы, характеризуемые коэффициентом седиментации 55S, что даже ниже аналогичного показателя у 70S-рибосом прокариотического типа. При этом две большие рибосомные РНК также имеют меньшие размеры, чем у прокариот, а малая рРНК вообще отсутствует. В митохондриях растений, напротив, рибосомы более сходны с прокариотическими по размерам и строению.


Митохондриальные белки[править | править исходный текст]

Количество транслируемых с митохондриальной мРНК белков, формирующих субъединицы крупных ферментных комплексов, ограничено. Значительная часть белков кодируется в ядре и синтезируется на цитоплазматических 80S-рибосомах. В частности, так образуются некоторые белки - переносчики электронов, митохондриальные транслоказы, компоненты транспорта белков в митохондрии, а также факторы, необходимые для транскрипции, трансляции и репликации митохондриальной ДНК. При этом подобные белки на своём N-конце имеют особые сигнальные пептиды, размер которых варьирует от 12 до 80 аминокислотных остатков. Данные участки формируют амфифильные завитки, обеспечивают специфический контакт белков со связывающими доменами митохондриальных распознающих рецепторов, локализованных на наружной мембране. До наружной мембраны митохондрии данные белки транспортируются в частично развёрнутом состоянии в ассоциации с белками-шаперонами (в частности - с hsp70). После переноса через наружную и внутреннюю мембраны в местах их контактов поступающие в митохондрию белки вновь связываются с шаперонами, но уже собственного митохондриального происхождения, которые подхватывают пересекающий мембраны белок, способствуют его втягиванию в митохондрию, а также контролируют процесс правильного сворачивания полипептидной цепи. Большинство шаперонов обладает АТФазной активностью, в результате чего как транспорт белков в митохондрию, так и образование их функционально активных форм являются энергозависимыми процессами.

Экология потребления. Здоровье: Гаплогруппа - группа схожих гаплотипов, имеющих общего предка, у которого в обоих гаплотипах имела место одна и та же мутация...

Когда я еще в детстве, расспрашивал свою бабушку о корнях, она рассказала одну легенду, что ее далекий прадед взял в жены «местную» девушку. Я заинтересовался этим и предпринял небольшое исследование. Местные для Вологодской области – это финно-угорский народ вепсы. Чтобы точно проверить эту семейную легенду, я обратился к генетике. И она подтвердила семейную легенду.

Гаплогруппа (в популяционной генетике человека - науке, изучающей генетическую историю человечества) - группа схожих гаплотипов, имеющих общего предка, у которого в обоих гаплотипах имела место одна и та же мутация. Термин «гаплогруппа» широко применяется в генетической генеалогии, где изучаются гаплогруппы Y-хромосомные (Y-ДНК), митохондриальные (мтДНК) и ГКГ-гаплогруппы. Генетические маркеры Y-ДНК передаются с Y-хромосомой исключительно по отцовской линии (то есть от отца сыновьям), а маркеры мтДНК - по материнской линии (от матери всем детям).

Митохондриальное ДНК (далее мтДНК) передается от матери к ребенку. Поскольку только женщины могут передавать мтДНК своим потомкам, тестирование мтДНК дает информацию о матери, ее матери и так далее по прямой материнской линии. мтДНК от матери получают как мужчины, так и женщины, по этой причине в проведении тестирования мтДНК могут принимать участие и мужчины, и женщины. Хотя в мтДНК и происходят мутации, их частота относительно низка. В течении тысячелетий данные мутации накапливались, и по этой причине женская линия в одной семье генетически отличается от другой. После того, как человечество расселилось по планете, мутации продолжили случайное появление в разделенных растоянием популяциях некогда единого человеческого рода.

Миграция митохондриальных гаплогрупп.

Русский север.

Мне очень близка история, природа и культура русского Севера. Это и потому, что оттуда родом моя бабушка, которая жила с нами и много времени посвятила моему воспитанию. Но думаю, что для беларусов близость еще большая: ведь русский север был заселен кривичами, которые также сформировали ядро будущей Беларуси. Кроме того, Псков и Новгород – это древние славянские центры, в определенной мере демократичные, со своем вече (так же как Киев и Полоцк).

Достаточно вспомнить историю Псковской вечевой республики и Новгородской республики. Длительное время эти территории колебались между ВКЛ и Московским княжеством, но последнее перехватило инициативу в «собирании земель». При других обстоятельствах, самобытность этого региона могла бы развиться в самостоятельную национальность. Впрочем, многие с гордостью называют себя «северными русскими». Равно как и некоторые беларусы, отличают западную беларусь (Литва, литвины) от восточной беларуси (русины). Попрошу не искать в моих словах никакой политической подоплеки.

Если в Беларуси славяне смешивались с балтийскими племенами, то в России - с финно-угорскими. Это и обеспечило уникальную этничность разных регионов. Очень точно сказал Парфенов, который родом из соседних с нашими сел: «Я всегда чувствую свое происхождение. Северный русский - для меня это очень важно. Это мое представление о России, о нашем характере, об этике и эстетике. Южнее Воронежа для меня - другие русские.» Любопытно, что Парфеновы есть и у меня в роду. Аксинья Парфенова (1800-1904) – это бабушка Кирилла Кирилловича Коричева (муж Александры Алексеевны Земсковой). Впрочем, фамилия эта распространенная, так что может родственники, а может и нет.

Череповец, прабабушка слева, бабушка справа внизу, 1957?

Моя митохондриальная группа - D5a3a.

При секвенировании ГВС1 - 16126с, 16136с, 16182с, 16183с, 16189с,16223Т, 16360Т, 16362С. Это значит, что моя митохондриальная группа - D5a3a. Это очень редкая гаплогруппа, даже генетики удивились – в Беларуси впервые такая определяется. В целом D – это азиатская группа. Ученые пишут, что она встречается в генофондах лишь некоторых этнических групп Северной Евразии.

Единичные D5a3-линии выявлены у таджиков, алтайцев, корейцев и русских Великого Новгорода. Все они (за исключением корейца), характеризуются 16126-16136-16360 ГВС1-мотивом, который встречается также в некоторых популяциях Северо-Восточной Европы.

Село Аннино, 1917, моя прабабушка.

Полногеномный анализ показал, что мтДНК русского и манси объединяются в отдель-ный кластер D5a3a, а мтДНК корейца представлена отдельной ветвью. Эволюционный возраст всей гаплогруппы D5a3 составляет примерно 20 тыс. лет (20560 ± 5935), в то время как степень дивергенции D5a3a-линий мтДНК соответствует примерно 5 тыс. лет (5140 ± 1150). D5 - группа отчётливо восточноазиатская.

В Сибири абсолютно преобладают варианты D4. Наиболее многочисленна и разнообразна D5 в Японии, Корее и южном Китае. Среди сибирских народов разнообразие D5 и наличие уникальных чисто этнических её вариантов отмечено у восточных монголоязычных групп, в том числе и у монголизированных эвенков. D5a3 отмечена в архаичном варианте в Корее.Более точный анализ показывает возраст D5a3a до 3000 лет, но родительская D5a3 очень древняя, там наверняка мезолит.

Череповец, 1940

На основании имеющихся данных кажется логичным предполагать происхождение D5a3 где-то на Дальнем Востоке (между Монголией и Кореей) и её миграцию на запад через Южную Сибирь. Вероятно, что мои прямые предки по женской линии пришли в Европу около трех тысяч лет назад, дав корни в Финляндии, Корелии, среди местных финно-угорских народов: саамы, карелы и вепсы. При смешивании с кривичами, эти гаплогруппы перешли современным жителям Вологды и Новгородчины.

Зачем митохондриям своя ДНК? Хотя почему бы симбионтам не иметь свою ДНК в себе, производя все необходимое на месте? Зачем тогда переносить часть митохондриальной ДНК в ядро клетки, создавая необходимость транспортировки продуктов генов в митохондрии? Почему митохондрии передаются только от одного из родителей? Каким образом митохондрии, полученные от матери, уживаются с геномом клетки, составленным из ДНК матери и отца? Чем больше люди узнают о митохондриях, тем больше вопросов возникает.

Впрочем, это касается не только митохондрий: в любой области любой науки расширение сферы знаний приводит только к увеличению ее поверхности, соприкасающейся с неизвестным, вызывающим все новые вопросы, ответы на которые расширят ту самую сферу с тем же предсказуемым результатом.

Итак, ДНК современных митохондрий распределена весьма странно: небольшая часть генов содержится непосредственно в митохондриях в кольцевой хромосоме (точнее, в нескольких копиях одной и той же хромосомы в каждой митохондрии), а большая часть чертежей для производства составных частей митохондрии хранится в ядре клетки. Поэтому копирование этих генов происходит одновременно с копированием генома всего организма, а производимые по ним продукты проходят долгий путь из цитоплазмы клетки внутрь митохондрий. Тем не менее это во многом удобно: митохондрия избавлена от необходимости копировать все эти гены при размножении, считывать их и строить протеины и другие составляющие, сосредоточившись на своей главной функции по производству энергии. Зачем же тогда в митохондриях все-таки находится небольшая ДНК, для обслуживания которой требуются все эти механизмы, избавившись от которых митохондрии могли бы еще больше ресурсов бросить на основную цель их существования?

Сначала предположили, что оставшаяся в митохондриях ДНК является атавизмом, наследием поглощенной метаногеном про-митохондрии, имеющей полный бактериальный геном. В начале их симбиоза, несмотря на существование в ядре тех митохондриальных генов (м-генов ), которые были необходимы для поддержания внутри метаногена комфортной для про-митохондрий среды (про это подробно написано в о митохондрии), те же самые гены хранились и в каждой из митохондрий. Про-митохондрия в начале своей жизни в качестве симбионта выглядела примерно так же, как современная бактерия на схеме слева от этого абзаца.

И очень медленно из-за невостребованности эти гены исчезали из митохондриальной хромосомы в результате самых разных мутаций. А вот клеточное ядро накапливало все больше м-генов, попадавших в цитоплазму из разрушенных симбионтов-митохондрий и встраивавшихся в геном химеры-эукариота. Как только свежевстроившийся м-ген начинал считываться, клеточные механизмы производили необходимые митохондриям продукты, освобождая симбионтов от самостоятельного их создания. А значит, митохондриальный аналог перешедшего в ядро гена больше не поддерживался в рабочем состоянии естественным отбором и стирался мутациями так же, как все предыдущие. Поэтому логично было бы предположить, что скоро и те гены, которые все еще остались в митохондриях, перейдут в ядро, что приведет к большой энергетической выгоде для эукариот: ведь из каждой митохондрии можно будет убрать громоздкие механизмы копирования, считывания и исправления ДНК, а так же все необходимое для создания протеинов.

Придя к такому выводу, ученые подсчитали, за какой срок путем естественного дрейфа из митохондрии в ядро должны были перекочевать все гены. И оказалось, что этот срок уже давно прошел. В момент появления эукариотической клетки митохондрии имели обычный бактериальный геном из нескольких тысяч генов (ученые устанавливают, каким был этот геном, изучая перенесенные в ядро м-гены у разных организмов), а сейчас митохондрии всех видов эукариот потеряли от 95 до 99,9% своих генов. Больше сотни генов в митохондриях не осталось ни у кого, но и безгеновой митохондрии тоже ни у кого не появилось. Если бы ключевую роль в этом процессе играл случай, то хотя бы несколько видов уже прошли бы путь переноса генов в ядро до конца. Но этого не произошло, и изученные на данный момент митохондрии разных видов, теряющие свои гены независимо друг от друга, сохранили один и тот же их набор, что прямо указывает на необходимость присутствия именно этих генов именно в митохондриях.

Более того, в других энергопроизводящих органеллах клеток, хлоропластах, тоже есть своя ДНК, и точно так же хлоропласты разных видов эволюционировали параллельно и независимо, оставшись каждый с одним и тем же набором генов.

Значит, все те значительные неудобства по поддержанию собственного генома в каждой клеточной митохондрии (а в среднем в одной клетке содержится несколько сотен!) и громоздкого аппарата по его копированию-исправлению-транслированию (основные, но не все! его части ты видишь на картинке слева) чем-то перевешиваются.

И на данный момент существует непротиворечивая теория этого «чего-то»: возможность производить определенные детали митохондрии непосредственно внутри нее необходима для регулирования скорости дыхания и подстройки происходящих в митохондрии процессов под ежеминутно меняющиеся потребности всего организма.

Представь, что в одной из сотен митохондрий клетки вдруг не хватает элементов дыхательной цепи (подробно про нее смотри в ), или в ней недостаточно АТФ-синтаз. Она оказывается либо перегруженной пищей и кислородом и не может их достаточно быстро перерабатывать, или ее межмембранное пространство распирает от протонов, которые некуда девать — полная катастрофа в общем. Конечно же все эти отклонения от идеальной жизненной ситуации запускают множественные сигналы, направленные на выравнивание крена тонущего корабля.

Эти сигналы запускают производство именно тех деталей, которых не хватает митохондрии в данный момент, активируя считывание генов, по которым строятся протеины. Как только митохондрия будет иметь достаточно компонентов дыхательной цепи или АТФаз, «крен выровняется», сигналы о необходимости постройки новых деталей перестанут поступать, и гены опять будут выключены. Это один из удивительно элегантных в своей простоте необходимых механизмов саморегуляции клетки, малейшее его нарушение ведет к серьезной болезни или даже нежизнеспособности организма.

Попробуем логически определить, где должны находиться необходимые для реакции на этот сигнал бедствия гены. Представь ситуацию, что эти гены находятся в ядре клетки, содержащей пару сотен митохондрий. В одной из митохондрий возник например недостаток NADH-дегидрогеназы : первого фермента из дыхательной цепи, чья роль состоит в отрыве двух электронов от молекулы NADH, передаче их следующему ферменту и прокачке 2-4 протонов через мембрану.

На самом деле такие недостатки какого-либо фермента случаются довольно часто, ведь они периодически выходят из строя, количество потребляемой пищи постоянно меняется, потребности клетки в АТФ тоже прыгают вслед за прыжками или валяниями организма, эту клетку содержащего. Поэтому ситуация очень типичная. И вот митохондрия испускает сигнал: «нужно строить больше NADH-дегидрогеназы!», который выходит за ее пределы, проходит по цитоплазме до ядра, проникает в ядро и запускает считывание нужных генов. По клеточным меркам время прохождения этого сигнала весьма существенно, а ведь требуется еще и вытащить из ядра в цитоплазму построенную матричную РНК, создать по ней протеины, переслать их в митохондрию…

И вот тут возникает проблема гораздо более существенная, чем трата лишнего времени: при создании специализированных митохондриальных протеинов они маркируются сигналом «доставить в митохондрию», но вот в какую? Неизвестно. Поэтому в каждую из пары сотен митохондрий начинают поступать протеины, которые им не нужны. Клетка тратит ресурсы на их производство и доставку, митохондрии заполнены лишними дыхательными цепями (что приводит к неэффективности дыхательных процессов), а та единственная митохондрия, которой эти протеины нужны, не получает их в достаточном количестве, ведь ей достается в лучшем случае сотая часть произведенного. Поэтому она продолжает посылать сигналы бедствия, и хаос продолжается. Даже по этому лирико-поверхностному описанию происходящего понятно, что такая клетка нежизнеспособна. И что есть гены, которые должны считываться и транслироваться непосредственно в митохондрии, чтобы регулировать происходящие именно в ней процессы, а не полагаться на запущенный партией ядром план производства гвоздей.. то есть протеинов дыхательной цепи для всех митохондрий сразу.

Проверив, что именно производится по оставшимся в митохондриях разных (а значит, и перемещавших м-гены в ядро независимо друг от друга) организмов, обнаружили, что это именно элементы для построения дыхательных цепей и АТФазы, а так же рибосом (то есть главной части аппарата трансляции).

Подробнее об этом (и не только) можно прочитать у Лейна в «Энергия, секс, самоубийство: митохондрия и смысл жизни» . Ну и можно просто сравнить схему митохондриальной ДНК, где расшифрованы кодируемые продукты (справа от этого абзаца), со схемой дыхательной цепи (вверху), чтобы стало понятно, что именно производится в митохондрии. Конечно же, не каждый протеин, встраиваемый в эту цепь, производится на месте, часть из них строится в цитоплазме клетки. Но основные «якоря», на которые цепляются остальные детали, создаются внутри митохондрии. Что позволяет производить ровно столько ферментов, сколько нужно, и именно там, где они необходимы.

Как митохондрии связаны с сексом и как уживаются разные геномы в одной клетке, напишу в одной из следующих глав этой линии.

05.05.2015 13.10.2015

Все сведения о строении организма человека и его предрасположенности к болезням зашифрованы в виде молекул ДНК. Основная информация находится в ядрах клеток. Однако 5% ДНК локализовано в митохондриях.

Что называют митохондриями?

Митохондрии являются клеточными органеллами эукариот, которые нужны для того, чтобы осуществить превращение энергии, заключенной в питательных веществах в соединения, которые могут усваивать клетки. Поэтому они нередко называются «энергетическими станциями», ведь без них существование организма невозможно.
Своя генная информация у данных органелл появилась вследствие того, что ранее они представляли собой бактерии. После их попадания в клетки организма-хозяина, они не смогли сохранить свой геном, при этом часть собственного генома они передали клеточному ядру организма-хозяина. Поэтому сейчас их ДНК (мтДНК) содержит только часть, а именно 37 генов от исходного количества. Главным образом, в них зашифрован механизм трансформации глюкозы до соединений — углекислый газ и вода с получением энергии (АТФ и НАДФ), без которой и невозможно существование организма хозяина.

В чем уникальность мтДНК?

Главное свойство, присущее митохондриальной ДНК, заключается в возможности наследовании ее только по линии матери. При этом все дети (мужчины или женщины) могут получить митохондрии от яйцеклетки. Происходит это благодаря тому, что женские яйцеклетки содержат более высокое количество данных органелл (до 1000 раз), чем мужские сперматозоиды. Вследствие этого дочерний организм получает их только от своей матери. Поэтому и унаследование их от отцовской клетки совершенно невозможно.
Известно, что гены митохондрий передались нам из далекого прошлого — от нашей проматери — «митохондриальной Евы», являющейся общим предком всех людей планеты по материнской линии. Поэтому данные молекулы считаются самым идеальным объектом при генетических экспертизах для установления родства по линии матери.

Как происходит определение родства?

Митохондриальные гены имеют множество точечных мутаций, благодаря чему они очень вариабельны. Это и позволяет установить родство. На генетической экспертизе с использованием специальных генетических анализаторов – секвенаторов, определяются индивидуальные точечные нуклеотидные изменения генотипа, их сходство или различие. У людей, не имеющих родственных связей по линии матери геномы митохондрий различаются существенно.
Определение родства возможно благодаря удивительным характеристикам митохондриального генотипа:
они не подвержены рекомбинациям, поэтому молекулы изменяются лишь в процессе мутирования, который может происходить в течение тысячелетия;
возможность выделения из любых биологических материалов;
при недостатке биоматериала или деградации ядерного генома, мтДНК может стать единственным источником для проведения анализов, благодаря огромному количеству ее копий;
вследствие большого количества мутаций по сравнению с ядерными генами клеток, достигается высокая точность при проведении анализа генного материала.

Что возможно установить при генной экспертизе?

Генная экспертиза мтДНК поможет при диагностике следующих случаев.
1. Для установления родства между людьми по линии матери: между дедом (или бабушкой) с внуком, братом с сестрой, дядей (или тетей) с племянником.
2. При анализе небольшого количества биоматериала. Ведь мтДНК содержится у каждой клетки в значительном количестве (100 — 10 000), тогда как ядерная — только по 2 копии у каждой 23 имеющихся хромосом.
3. При идентификации древнего биоматериала – сроком хранения более, чем тысячелетнего периода. Именно благодаря данному свойству ученые смогли идентифицировать генный материал из останков членов семьи Романовых.
4. При отсутствии иного материала, ведь даже один волос содержит значительное количество мтДНК.
5. При определении принадлежности генов к генеалогическим ветвям человечества (африканской, американской, ближневосточной, европейской гаплогруппе и другим), благодаря чему возможно определение происхождения человека.

Митохондриальные заболевания и их диагностика

Митохондриальные заболевания проявляются в основном за счет дефектов мтДНК клеток, связанных со значительной подверженности данных органелл к мутациям. Сегодня насчитывается уже порядка 400 болезней, связанных с их дефектами.
В норме каждая клетка могут включать как нормальные митохондрии, так и с определенными нарушениями. Часто признаки заболевания при этом никак не проявляют себя. Однако при ослаблении процесса синтеза энергии в них наблюдается проявление таких болезней. Данные заболевания, прежде всего, связаны с нарушением мышечной или нервной систем. Как правило, при таких болезнях наблюдается позднее начало клинических проявлений. Частота возникновения данных болезней составляет 1:200 человек. Известно, что наличие мутаций митохондрий способно вызвать нефротический синдром при беременности женщины и даже внезапную смерть младенца. Поэтому, исследователями предпринимаются активные попытки решения данных проблем, связанных с лечением и передачей генетических заболеваний этого типа от матерей к детям.

Как связано старение с митохондриями?

Реорганизацию генома данных органелл обнаружили и при анализе механизма старения организма. Сотрудниками Университета Хопкинса опубликованы результаты, проведенные при наблюдениях за показателями крови 16000 пожилых людей из Америки, демонстрирующие, что снижение количества мтДНК было напрямую взаимосвязано с возрастом пациентов.

Большинство из рассмотренных вопросов сегодня стало основой новой науки – «митохондриальной медицины», сформировавшейся в виде отдельного направления в 20 столетии. Прогнозирование и лечение заболеваний, связанных с нарушением генома митохондрий, генетическая диагностика – вот первостепенные её задачи.

Строение нуклениовых кислот.

Н.к.- являются универсальной информационной макромолекулой клетки, главной функцией которой является: 1)Хранение наследственной информации в форме генетического кода. 2)Воспроизведение наследственной информации путем самоудвоения или репликации ДНК. 3)Реализация наследственной информации в процессе биосинтеза белка. Н. к. впервые были получены из ядер клеток гноя. Химический анализ показал что сущ-ет два вида н к: 1)ДНК, 2)РНК. ДНК обнаружены в ядре, митохондриях и центриолях. РНК обнаружены в ядре, в ядрышках, в рибосомах, в митохондриях. В химическом отношении н к – полимеры состоящие из полинуклеотидных цепей, мономером н.к. яв-ся – нуклеотид. В ДНК их 4 вида: А,Т,Г,Ц. В РНК вместо Тимина – Урацил. По структуре Аденин и Гуанин пуриновые основания

Свойства и функции ДНК.

Химический анализ показал что сущ-ет два вида н к: 1)ДНК, 2)РНК. ДНК обнаружены в ядре, митохондриях и центриолях. РНК обнаружены в ядре, в ядрышках, в рибосомах, в митохондриях. В химическом отношении н к – полимеры состоящие из полинуклеотидных цепей, мономером н.к. яв-ся – нуклеотид. В ДНК их 4 вида: А,Т,Г,Ц. В РНК вместо Тимина – Урацил. По структуре Аденин и Гуанин пуриновые основания



1 бензольное кольцо) Т,Ц,У(пиримидиновые основания – 2 бензольных кольца). ДНК представляет собой спираль состоящую из двух полинуклеотидных цепей. Полинуклеотидные цепи состоят из нуклеотидов соединенных друг с другом благодаря водородным связям которые формируют комплементарные пары. В ДНК А=Т, Г=Ц(Правило Чаргаффа 1951 год). Нуклеотиды в каждой цепи ДНК между собой соединены так, что 5-ый углерод сахара предидущего нуклеотида соединен с 3-им углеродом сахара последующего. Благодаря таким связям молекула ДНК имеет два конца. Диаметр спирали ЛНК 2нм. Один оборот спирали 3,4 нм. Расстояние между нуклеотидами 0,34 нм. Каждый виток спирали содержит 10 пар нуклеотидов. В ДНК различают несколько уровней организации: 1)Первичная структура – это порядок расположения нуклеотидов в комплементарных цепях. 2)Вторичная структура – двойная спираль ДНК. 3)Третичная – ДНК в составе хромосом.

Особенности строения митохондриальной ДНК.

Митохондриальная ДНК (мтДНК ) - ДНК, локализованная (в отличие от ядерной ДНК) в митохондриях, органоидах эукариотических клеток.

У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы. Митохондрии млекопитающих обычно содержат от двух до десяти идентичных копий кольцевых молекул ДНК. У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.У протистов из отряда кинетопластид (например, у трипаносом) в особом участке митохондрии (кинетопласте) содержится два типа молекул ДНК -- идентичные макси-кольца (20-50 штук) длиной около 21 т.п.о. и мини-кольца (20 000 - 55 000 штук, около 300 разновидностей, средняя длина около 1000 п.о.). Все кольца соединены в единую сеть (катенаны), которая разрушается и восстанавливается при каждом цикле репликации. Макси-кольца гомологичны митохондриальной ДНК других организмов. Каждое мини-кольцо содержит четыре сходных консервативных участка и четыре уникальных гипервариабельных участка. В мини-кольцах закодированы короткие молекулы направляющих РНК (guideRNA), которые осуществляют редактирование РНК, транскрибируемых с генов макси-колец. Митохондриальная ДНК (мтДНК) представляет собой геном клеточных органелл – митохондрий. Эндосимбиотическое происхождение этих органелл обуславливает полуавтономное существование генетической системы митохондрий. Так, синтез ДНК в митохондриях проходит независимо от синтеза ДНК ядерной, а наследование этой цитоплазматической генетической структуры – митохондриальной хромосомы – происходит в норме строго по материнской линии. Это дает авторам основание условно выделить совокупность митохондриальных генов и любых реплицирующихся фрагментов мтДНК в отдельный генетический ресурс популяции – митохондриальный генофонд. ДНК-содержащие структуры в митохондриях были выявлены в 60-х годах. За последние четверть века детально изучена структурная и функциональная организация митохондриального генома человека и многих видов животных. Митохондриальная хромосома представлена кольцевой двухцепочечной молекулой ДНК, которая присутствует в органелле в виде ковалентно замкнутой суперспирализованной формы, ассоциированой с внутренней мембраной митохондрии. Каждая органелла содержит от 1 до 8 молекул ДНК, что составляет 1000 – 8000 копий на клетку. Как правило, один организм обладает единой формой мтДНК, т.е. одним гаплотипом, унаследованным по материнской линии.

Типы РНК в клетках.

В клетках различают три типа РНК: 1)И-РНК(матричная или информационная РНК).

2)Р-РНК(рибосомная РНК).

3)Т-РНК(транспортная РНК)

Матричная РНК – синтезируется и транскрибируется на Днк и несет информацию для синтеза белка. Р-РНК и Т-РНК – синтезируются в ядрышках ядра. Ядрышко – это участок хромосом имеющий спутники. Ядрышковая ДНК содержит гены на которых синтезируются Р-РНК и Т-РНК. Р-РНК находятся в рибосомах(в малой и большой субъединице). Назначение: через малую субъединицу АК присоединяется к Т-РНК через АТФ. Отличие ДНК от РНК: 1)РНК состоит из одной цепи. 2)У РНК сахар – рибоза. 3)РНК короче чем ДНК. 4)Т-РНК имеет форму третичной структуры. Матричная (информационная) РНК - РНК, которая служит посредником при передаче информации, закодированной в ДНК к рибосомам, молекулярным машинам, синтезирующим белки живого организма. Кодирующая последовательность мРНК определяет последовательность аминокислот полипептидной цепи белка

Транспортные (тРНК) - малые, состоящие из приблизительно 80 нуклеотидов, молекулы с консервативной третичной структурой. Они переносят специфические аминокислоты в место синтеза пептидной связи в рибосоме. Каждая тРНК содержит участок для присоединения аминокислоты и антикодон для узнавания и присоединения к кодонам мРНК. Рибосомальные РНК (рРНК) - каталитическая составляющая рибосом. Эукариотические рибосомы содержат четыре типа молекул рРНК: 18S, 5.8S, 28S и 5S. Три из четырёх типов рРНК синтезируются в ядрышке. В цитоплазме рибосомальные РНК соединяются с рибосомальными белками и формируют нуклеопротеин, называемый рибосомой. Рибосома присоединяется к мРНК и синтезирует белок. рРНК составляет до 80 % РНК, обнаруживаемой в цитоплазме эукариотической клетки

Вам также будет интересно:

Элинор фарджон седьмая принцесса Кто написал мартин пиппин в яблоневом саду
Элеанор (Элинор) Фарджон – английская детская писательница, родилась 13 февраля 1881 года....
Согласна на все Люси МонроСогласна на все
Согласна на все Люси Монро (Пока оценок нет) Название: Согласна на всеО книге «Согласна...
Что объединяет всех успешных людей?
Для того чтобы узнать секрет успеха, люди тратят массу времени, а специалисты,...
Что такое блуд в православии, и как за это наказывает бог Что делать невинной стороне
Против целомудрия (в обиходе часто - любое нарушение морали в сфере половых отношений);...
Головоломный путь к нестандартному мышлению
Издано с разрешения MICHAEL O’MARA BOOKS LIMITED Все права защищены. Никакая часть данной...